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Abstract
We propose a method for the calculation of transmission and reflection spectra
of close-packed monolayers formed from metal nanoparticles. The model
takes into account the correlation effects and electrodynamic coupling in close-
packed monolayers treated in the framework of multiple scattering of waves
theory as well as the size dependence of the metal nanoparticle optical functions.

The transmission and reflection spectra for monolayers consisting of Ag
nanospheres are calculated for various particle concentrations and sizes. The
matrix influence on the spectral position of surface plasmon resonances for
nanoparticle monolayers is considered. The concentration red shift of the
plasmon attenuation resonances is shown and the reasons for its appearance
are discussed.

1. Introduction

At the present time it is well known that planar structures of monodisperse metal nanoparticles
with a high surface concentration are perspective materials for linear and nonlinear optics,
laser physics, optoelectronics etc. In recent years there has been considerable advances in
technology of the fabrication of such metal–dielectric nanomaterials with controlled sizes and
packing factor values [1] and their unique electrical properties are actively being studied.
The optical characteristics of such objects are investigated to a considerably lesser extent,
both experimentally and theoretically. At the same time such research is certainly essential
for the creation of metal–dielectric nanostructures with desirable and controllable selective
absorbance, reflection and transmission.

The considerable distinctions between the optical properties of metal nanostructures and
bulk materials are connected to the appearance of surface modes (plasmon resonances) on
metal nanoparticles and the size dependence of their optical constants [2]. In the case of
close-packed nanoparticle arrays these effects are of a collective nature. It was experimentally
established that the collective interactions transform a structure of plasmon resonances and
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have an influence on their spectral position [3–7]. This paper is dedicated to the theoretical
investigation of the effect of a metal nanoparticles concentration on random monolayer spectral
transmission and reflection within the plasmon resonance area.

For this purpose we have developed a theoretical scheme of collective electrodynamic
processes into close-packed metal nanoparticles monolayers, based on the quasicrystalline
approximation (QCA) [8–11] of the theory of multiple scattering of waves (TMSW). The size
dependence of the metal nanosphere dielectric function has been described using a model of
the limitation of the electron mean free path (LEMFP) [12].

2. Calculation method

A close-packed metal nanoparticles monolayer is a kind of composite material. Usually,
spectral characteristics of composite materials are calculated using the effective dielectric
constant (or permittivity) εeff that is involved by one of the models of effective media. Of these
the best known are the Maxwell–Garnett theory (MGT) that results in the following relation:

εeff − ε0

εeff + 2ε0
= f

ε − ε0

ε + 2ε0

or the Bruggeman approximation (BA)

0 = f
ε − εeff

ε + 2εeff
+ (1 − f )

ε0 − εeff

ε0 + 2εeff
.

Here f represents the volume fill fraction of the inclusion particles and ε and ε0 are dielectric
constants of particles and a surrounding media, respectively.

However, the MGT is not intended for compounds with a significant inclusion
concentration and the BA does not describe plasmon attenuation resonances of metal
nanoparticles [7]. That is why one has to use more exact theoretical treatment of close-packed
nanoparticle arrays in their plasmon resonance spectral ranges. At the present time the most
effective means to realise this is the employment of approaches based on the TMSW.

The TMWS supposes that the resulting field in any point of space (both inside and
outside of a disperse medium) is to be a sum of various multiple scattered waves taking
into account their phase relations. In addition, each particle is not affected by an incident field
E0, but it is subjected to an effective field obtained as a composition of all the waves that
are multiple scattered to the particle area of disposition. Consideration of phase correlations
of multiple scattered waves, also called correlation effects, is especially important for space-
ordered disperse systems, among which are the close-packed particle arrays characterized by
short-range space ordering.

In the QCA of TMWS [8], after averaging the different configurations of a particles
ensemble, the mean field (also called the coherent field) 〈E (r)〉 at some point r is determined
by the following system of two equations:

〈E(r)〉 = E0(r) + n0

∫
dR

∫
dr′ ↔

�(r, r′ + R)〈E(r′ + R)〉R

〈E(r + R)〉R = E0(r + R) +
∫

dr′ ↔
�(r + R, r′ + R)〈E(r′ + R)〉R

+ n0

∫
dR′ g(|R − R′|)

∫
dr′ ↔

�(r + R, r′ + R′)〈E(r′ + R′)〉R,R′ .

(1)

Here 〈E (r)〉R is the averaged field with one fixed particle at the point R; 〈E(r′ + R′)〉R,R′ is
the averaged field with two fixed particles at points R and R′, n0 is the number of particles per

unit area;
↔
�(r, r′) is the tensor Green function; g

(|R − R′|) is the radial distribution function
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(a)

(b)

Figure 1. Schemes and radial functions of a sparse random (a) and a close-packed partially
ordered (b) disperse layers.

characterizing the probability of the location of two particles at the points R and R′. For a
statistically isotropic and uniform medium it depends only on the modulus |R − R′|.

To calculate the radial-distribution function for the close-packed system of solid particles
we used the following scheme. The g(R1,R2) function may be expressed as g(R1,R2)
≡ 1 + h(R1,R2), where h(R1,R2) is the full correlation function satisfying the following
self-consistent equation [13]:

h(R1,R2) = c(R1,R2) + n0

∫
c(R1,R3)h(R3,R2) dR3.

Here c(R1,R2) is a part of the full correlation function h(R1,R2) describing the direct
correlation between two particles located at the points R1 and R2. The most successful is
the Percus–Yevick approximation for the direct correlation function

c(R1, R2) = [
exp(−βφ(R1, R2)) − 1

]
exp(βφ(R1, R2)g(R1, R2))

where φ is the interparticle potential and β is the normalizing coefficient.
With the use of this approximation the integral equation for the full correlation function

can be solved exactly when particles are solid spheres, i.e.

φ(R1, R2) =
{

∞ for |R1 − R2| < d

0 for |R1 − R2| > d.

The g (R) function of a close-packed system is marked by pronounced maxima for R

values corresponding to the most probable distances between the particles whereas for a sparse
random disperse structure the particle space distribution is homogeneous and g (R) = const
(see figure 1). This behaviour of g (R) reflects the appearance of the short-range ordering in
the close-packed disperse system. The higher the particle packing density, the more extended
the range of the particle ordering is. For particles located in this range the relations between
phases of their scattered waves are not random. Scattered waves are partially coherent and
their interference has to be taken into account as per (1).

When the particles are spheres it is convenient to solve (1) by an expansion of the
electromagnetic fields and the tensor Green function on the vectorial spherical harmonics.
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As a result we obtain the following relations for coherent transmission TM and reflection RM

of a partially ordered monolayer of monodisperse particles [9, 10]:

TM =
∣∣∣∣1 − π

k2
n0

∑
l

(2l + 1)(blM + blE)

∣∣∣∣
2

RM =
∣∣∣∣− π

k2
n0

∑
l

( − 1)l(2l + 1)(blM − blE)

∣∣∣∣
2

where k is the wavevector, the coefficients blM and blE are determined from the system of
equations:

blM = bl + n0bl

∑
l′

(Pll′bl′M + Qll′bl′E)

blE = al + n0al

∑
l′

(Pll′bl′E + Qll′bl′M).

Here al and bl are the Mie coefficients, which define scattering and absorption properties of an
individual particle with a diameter d and a complex permittivity ε [2]. The terms including the
functions Pll′ , Qll′ appear as a consequence of a consideration of coherent particles irradiation.
They depend on the radial-distribution function g (R) in a complicated manner [9,10]. When
a single particles permittivity becomes size-dependent, one has to take this circumstance into
account on the step of the Mie coefficient calculation.

We have considered size-effect modified permittivity ε in the framework of the classical
electron mean free path model [14], which allows to obtain the size-dependent ε of metal
spherical nanoparticles in the analytical form. Thus the LEMFP model argues that if the
metal particle sizes are comparable with the mean free path of electrons in bulk material L∞
the interaction of the conduction electrons with the particle surface becomes important as an
additional collision process. This interaction results in the reduced effective mean free path L

and, consequently, the increased damping constant γd . In accordance with [12] the appropriate
size-dependent damping constant is defined as:

γd = γ0 +
vF

L
(2)

where vF is the Fermi velocity and γ0 is the bulk damping constant. For diffuse electron
scattering at the particle surface L = 1

2d. Then, to obtain an appropriate size-dependent
permittivity ε (ω, d), one can use the Drude–Lorentz–Sommerfeld model with the bulk
damping constant γ0 replaced by the size-dependent damping constant γd [2] as follows:

ε(ω, d) = 1 − ω2
p

ω2 + iγdω
. (3)

Here ωp is the plasma frequency for the bulk metal where ωp = N0e/meε0 and N0 is the free
electron density, e and me are the electron charge and the effective mass, respectively.

3. Results and discussion

To study the role of the particle correlation effects in the plasma resonance absorption in
the visible spectrum we have compared the spectral characteristics of metal nanoparticles
monolayers with various particles’ packing density and the corresponding sparse disperse
layers. The monolayer overlap parameter η = 1

4n0πd
2 was varied over the range 0.2–0.6

and for the each value of η the diameter of the particles was changed (d = 2–10 nm). The
corresponding sparse (or diluted) disperse layers are the structures consisting of particles with
the same sizes and total numerical quantity as in the monolayer considered but with the volume
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Figure 2. Coherent transmission of monolayers made of Ag nanospheres with the diameter
d = 2 nm imbedded into a matrix with the refractive index nm = 1.4.

fill fraction f = 0.01. With the overlap parameter values under consideration these sparse
systems may be considered as optically thin disperse layers. In addition they are random and
characterized by a homogeneous particle distribution. It means that the conditions of single
independent scattering are fulfilled. This permits us to neglect the multiple scattered waves
and to calculate the spectra of the sparse systems using the Bouger law for the scattering media
TB = exp(−ηQλ) [2]. Here Qλ is the single particle extinction efficiency factor. For spherical
particles the numerical values of Qλ may be found using Mie theory [2].

The calculation of the coherent transmission and reflection spectra for Ag nanoparticle
monolayers has been made with the help of the QCA-based algorithm stated in section 2. The
special software for numerical simulations was developed earlier and is described in detail
in [10,15]. This scheme has been already successfully used for studying the optical properties
of close-packed monolayers and stacks consisting of dielectric particles [10, 15], as well as
bandgap formation in opal-based photonic crystals [16]. We now also introduce into this
scheme the size-dependence of the metal nanoparticles permittivity.

The LEMFP method of calculation of the size-dependent ε has been applied to Ag
nanospheres in the following manner. Metal permittivity was subdivided into two parts
associated with the contributions of free and bound electrons, respectively. The part of
permittivity defined by free electrons was considered to be size-dependent. Its values
were calculated on the basis of (2) and (3) with the parameters: γ0 = 0.27 × 1014 s−1,
ωp = 1.38 × 1016 s−1, vF = 1.4 × 106 m s−1 [17].

In figure 2 one can see the spectra of coherent transmission in the visible spectrum for
close-packed monolayers and corresponding sparse layers of 2 nm Ag particles in a gelatine
matrix (refractive index nm = 1.4) with different values of the particle-overlap parameter.

Recall that there are two possible ways of controlling the particle concentration of a
disperse system. The first way is to regulate a system volume at the fixed number of particles
(compare solid and dashed curves for η = const). The second way is to change the particle
quantity at the same system volume (compare, for example, solid curves for different η values).

To analyse the concentration effects using the first method, when the number of particles
remains constant, the spectra of monolayers (figure 2, solid curves) and corresponding sparse
systems with the same η values (figure 2, dashed curves) were compared. As can be observed
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Figure 3. Coherent transmission of monolayers made of Ag spheres with d = 2 nm. The overlap
parameter of monolayers is η = 0.6.

from figure 2, increasing the particles’ packing density whilst keeping the size and quantity
constant results in the red displacement of the plasmon resonance frequency. In addition,
when the interparticle distances decrease, enhancing the electrodynamics coupling leads to
strengthening of the plasmon resonance.

The second case, i.e. when the particle number is changed, has been realised experimen-
tally for Ag nanospheres by Hovel et al [3]. Unfortunately, the absence of exact particle
concentration values in that paper does not permit the detailed comparison of those experi-
mental results with our theoretical data. But it does confirm the tendency to the red shift of
plasmon resonances as the particle concentration in a monolayer increases (see figure 2). As it
was noted in [3], the interference of waves scattered at close-packed nanoparticle aggregates
acts, apparently, in the same manner as the growth of an isolated particle size. Aggregating
particles is somewhat similar to enlarging them. At the QCA the appearance of close-packed
nanoparticle aggregates is achieved by increasing short-range ordering. In particular it means
that the radial-distribution-function values grow over the range of small interparticle distances.

The growth of the refractive index for matrices containing Ag nanoparticles also gives rise
to a red shift and to an intensification of the plasmon resonance (see figure 3). This effect is
observed for various Ag particle sizes and concentrations. It is connected with changing the
Frolich frequency ω0, that determines the spectral position of a plasmon resonance for a single
dipole metal particle in a homogeneous nonabsorbing medium with the following conditions:

Re [ε(ω0)] = −2Re [εm(ω0)]

Im [ε(ω0)] ≈ 0.
(4)

The influence of the particle size on the collective plasmon resonance characteristics
is shown in figure 4. The growth of particle diameters over the range under consideration
(d < 10 nm) is accompanied by the amplification and the narrowing of the plasmon attenuation
peak, whereas the resonance spectral position for a system of such dipole particles is defined
only by their concentration value. It should be emphasized, that allowing the optical constant
size dependence leads to a broadening of the plasmon attenuation bands and decreasing its
magnitude at all investigated values of d and η.
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Figure 4. Coherent transmission and reflection of monolayers made of different-sized Ag spheres
(η = 0.4, nm = 1.4).

It is worthwhile noting, that selective reflectance within the plasmon resonance spectral
region is significantly enhanced when the particle sizes increase. As depicted in figure 4, for
Ag monolayers with η = 0.4 maximal reflectance increases from 5 to 20% when particle
diameters change from 5 to 10 nm.

Analysis of the data in figures 2–4 allows us to propose that the concentration red-shift
treatment is extended as opposed to the conclusions given in [3]. From our point of view
this shift may be determined by two reasons. The first one, as already mentioned, consists
of the appearance of the short-range order at a spatial particle arrangement accompanying the
particle concentration increase. The closer the packing, the larger the correlation radius lcor

corresponding to the mean size of aggregates is. When lcor is not infinitesimal compared with
the incident light wavelength, the independence of the plasmon resonance spectral position on
the aggregate size (that is characteristic for dipole scattering) is violated. This fact is exhibited
by the red concentration shift of the collective plasmon resonance.

However, we suppose that there is one more possible explanation of the red concentration
displacement. This shift may be defined not only by the short-range electrodynamic
interactions, connected with particle aggregation and, consequently, with a change in the
nearest surrounding particles. In addition, it may be caused by the effective-field modification
as a whole when the particle concentration grows. Put more simply, the role of the effective
field reduces to the assumption that a single inclusion is excited by a wave propagating in some
effective medium associated with the average coherent field and characterized by the effective
refractive index.

Then, by analogy with the Frolich frequency ω0 determining the particle plasmon spectral
position in a homogeneous medium by the conditions (4), we introduce the effective Frolich
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Figure 5. Spectral dependence of the bulk Ag permittivity (solid curves) and the real part of εeff
(dashed curves) for a monolayer of Ag nanoparticles in the dielectric matrix (nm = 1.4) calculated
by the MGA at different overlap parameters η (see values next to the curves).

frequency ω′
0, which determines the collective plasmon frequency as follows:

Re [ε(ω′
0)] = −2Re [εeff(ω

′
0)] (5)

Im [ε(ω′
0)] ≈ 0 Im [εeff(ω

′
0)] ≈ 0. (6)

The concentration dependence of the effective Frolich frequency can be analysed, for
example, by the application of the MGA for effective permittivity (see figure 5). As can be
observed from figure 5, there are two roots of (5) for media with high particle concentrations and
both of them are red displaced as the concentration is increased. Nevertheless, in figures 2–4
we find only a single red-shift collective plasmon resonance with the particle concentration
growth. Apparently, the realization of a collective plasmon doublet structure is encumbered
by breaking conditions (6) as a long-wave region is reached.

It is necessary to say that the second reason under consideration for the red concentration
shift (associated with the concentration dependence of εeff ) can also play a significant role if
lcor remains very small compared with a wavelength for small particle sizes. This conclusion is
confirmed by a comparison of figures 2 and 4. Figure 4 demonstrates the size independence of
a spectral position of the plasmon attenuation resonance at close-particle packing. However,
if the spectral position of the plasmon attenuation resonance was determined by particle
aggregation, we should see a red size shift for close-packed monolayers with η = const.
This supposition is based on the fact that the dipole approximation is broken for aggregates
consisted of Ag particles with diameters of 5–10 nm [14]. The absence of this size shift allows
for the conclusion that in this case the main reason for a plasmon resonance concentration shift
is the concentration change of the effective permittivity of the nanostructure.
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4. Conclusions

In summary, this paper has shown that QCA-aided numerical simulation of the TMSW and
LEMFP model is a good way of describing strong dependencies of spectral characteristics
of close-packed metal nanoparticle monolayers on their sizes, concentrations and matrix
refractive-index values. Such calculations may be useful for the preliminary estimation of
microstructure parameters with desirable spectral characteristics for the creation of planar
nanostructures with controllable selective absorbance, reflection and transmission properties.
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